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ABSTRACT

Existing energy-efficient approaches to in-network aggrega-
tion in sensor networks can be classified into two categories,
tree-based and multi-path-based, with each having unique
strengths and weaknesses. In this paper, we introduce Tribu-
tary-Delta, a novel approach that combines the advantages
of the tree and multi-path approaches by running them si-
multaneously in different regions of the network. We present
schemes for adjusting the regions in response to changes
in network conditions, and show how many useful aggre-
gates can be readily computed within this new framework.
We then show how a difficult aggregate for this context—
finding frequent items—can be efficiently computed within
the framework. To this end, we devise the first algorithm
for frequent items (and for quantiles) that provably mini-
mizes the worst case total communication for non-regular
trees. In addition, we give a multi-path algorithm for fre-
quent items that is considerably more accurate than pre-
vious approaches. These algorithms form the basis for our
efficient Tributary-Delta frequent items algorithm. Through
extensive simulation with real-world and synthetic data, we
show the significant advantages of our techniques. For ex-
ample, in computing Count under realistic loss rates, our
techniques reduce answer error by up to a factor of 3 com-
pared to any previous technique.

1. INTRODUCTION

Networked collections of smart sensors are increasingly
being used to monitor and query the physical world. These
small sensor motes are typically battery-powered, possess
limited CPUs and memory, and organize themselves into ad
hoc multi-hop wireless networks around more capable base
stations. A paramount concern in these sensor networks is to
conserve the limited battery power, as it is usually imprac-
tical to install new batteries in a deployed sensor network.
Because the battery drain for sending a message between two
neighboring sensors exceeds by several orders of magnitude
the drain for local operations within a sensor mote, minimiz-
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Figure 1: Tributaries and Deltas

ing sensor communication is a primary means for conserving
battery power [1, 17]. Thus for aggregation queries (e.g., the
average temperature reading across the sensor network), it is
now accepted practice [10, 11, 21] that aggregates are com-
puted in-network whenever possible—this avoids the exces-
sive communication required to route all the sensor readings
to the base station. With the in-network approach, sensor
readings are accumulated into partial results that are com-
bined as messages propagate toward the base station. In
many common cases (such as Sum, Count, Average, Min,
Max), each sensor node transmits only one short message
during the aggregation—a considerable energy savings over
the route-all approach.

Existing energy-efficient approaches to in-network aggre-
gation can be classified into two categories: tree-based and
multi-path-based. In the tree-based approach (such as in
TAG [10], TinyDB [11], and Cougar [21]), a spanning tree,
rooted at the base station, is constructed for use in answer-
ing queries. Subsequently, each query answer is generated by
performing in-network aggregation along the tree, proceed-
ing level-by-level from its leaves to its root. Many aggregates
(including those given above) can be computed exactly and
with minimal communication on a tree topology, assuming
no communication failures. However, wireless sensor net-
works have high communication failure rates (up to 30%
loss rate is common [22]), and each dropped message results
in an entire subtree of readings being dropped from the ag-
gregate answer. As a result, it is not uncommon to lose
85% of the readings in a multi-hop sensor network, causing
significant answer inaccuracy [15].

To overcome the severe robustness problems of the tree
approach, two recent papers [5, 15] propose using multi-
path routing for in-network aggregation. Instead of having
each node send its accumulated partial result to its single
parent in an aggregation tree, the multi-path approach ex-
ploits the wireless broadcast medium by having each node
broadcast its partial result to multiple neighbors. Both pa-
pers recommend a topology called rings, in which the nodes



Energy Components Error Components Latency
Number of Message Communica- Approximation
messages size tion error error
Aggregate: any Count | Freq.Items any Count Freq.Items any
Tree [10, 11, 21, 23] minimal small medium very large none small minimal
Multi-path (rings) [5, 15] minimal small large very small small small minimal
Tributary-Delta [this paper] minimal small medium very small very small small minimal

Table 1: Comparison of previous in-network aggregation approaches and the Tributary-Delta approach.
The total energy consumption is given by its two components. The total error is given by the sum of the
communication error produced by message losses within the network and the approxzimation error coming from
the aggregation algorithm (independent of message loss). Because the message size and approximation error
depend on the aggregate, these metrics are shown for two representative aggregates: Count and Frequent

Items.

are divided into levels according to their hop count from the
base station, and the multi-path aggregation is performed
level-by-level toward the base station. This approach sends
the same minimal number of messages as the tree approach
(i.e., one transmission per node), making it energy-efficient.
It is also very robust to communication failures because each
reading is accounted for in many paths to the base station,
and all would have to fail for the reading to be lost. How-
ever, there are two drawbacks to the multi-path approach:
(1) for many aggregates, the known energy-efficient tech-
niques provide only an approzimate answer (with accuracy
guarantees), and (2) for some aggregates, the message size
is longer than when using the tree approach, thereby con-
suming more energy.

The first two rows of Table 1 provide a qualitative compar-
ison of the two previous in-network aggregation approaches.
For multi-path, we consider the rings topology. As the table
shows, the tree approach suffers from very high communi-
cation error while the multi-path approach can have larger
message sizes and approximation errors.

Tributary-Delta. In this paper we present a new approach
to in-network aggregation that combines the advantages of
both the tree and multi-path approaches, by dynamically
adapting the aggregation scheme to the current message loss
rate. Under low loss rates, trees are used for their low or
zero approximation error and their short message size. Un-
der higher loss rates or when transmitting partial results
accumulated from many sensor readings, multi-path is used
for its robustness. We call our approach Tributary-Delta be-
cause of the visual analogy to a river flowing to a gulf: when
far from the gulf, the merging of river tributaries forms a
tree-like shape, whereas near the gulf, the river branches
out into a multi-path delta in order to reach the gulf despite
the increased obstacles (see Figure 1).

We show that our Tributary-Delta approach significantly
outperforms both previous approaches. An example result
is shown in Figure 2 (full details in Section 7). As expected,
the tree approach is more accurate than the multi-path ap-
proach at very low loss rates, because of its lower approxi-
mation error (0% versus 12%). However, at loss rates above
0.05%, tree is much worse than multi-path because of its
high communication error. On the other hand, Tributary-
Delta provides not just the best of both (e.g., from running
either tree or multi-path in the entire network), but in fact
provides a significant error reduction over the best, across a
wide range of loss rates—thus demonstrating the synergies
of using both in tandem. The last row of Table 1 summarizes
the benefits of Tributary-Delta.
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Figure 2: RMS error of a Count query under varying
message loss rates. The experimental setup and the
full graph are provided in Section 7.

To enable simultaneous use of the tree and multi-path
aggregation approaches, we must resolve several challenges.
For example, how do the sensor nodes decide whether to
use the tree or the multi-path aggregation approach? How
do nodes using different approaches communicate with each
other? How do nodes convert partial results when transi-
tioning between approaches? We identify and address these
and other challenges in this paper, through a careful sys-
tem design and algorithmic study. We also discuss how
a large number of aggregates can be computed within the
Tributary-Delta framework.

Our most significant algorithmic result is a new Tributary-
Delta algorithm for finding frequent items. For this result,
we devise a new tree-based algorithm, a new multi-path-
based algorithm, and a new (combined) Tributary-Delta
algorithm. Previous tree-based frequent items algorithms
worked only for balanced, regular® trees [12] and/or used too
much communication [8, 12]. We present the first frequent
items algorithm that provably minimizes the worst case to-
tal communication for non-regular trees that have certain
properties common to typical sensor network deployments.
In addition, our new multi-path algorithm uses low total
communication while providing high accuracy; the only pre-
vious approaches [15] are far less accurate.

Contributions. In summary, the main contributions of
this paper are:

e We introduce the Tributary-Delta approach to in-net-
work aggregation in sensor networks, for adapting the
aggregation scheme to current message loss rates. We

LA regular tree is one where each internal node has the same
number of children.



show that many aggregates can be readily computed
in this framework.

e We present schemes for adjusting the balance between
tributaries and deltas in response to changes in net-
work conditions.

e We present a novel Tributary-Delta algorithm for find-
ing frequent items—a difficult aggregate for this con-
text. To this end, we devise the first algorithm for
frequent items (and for quantiles) that provably mini-
mizes worst case total communication for non-regular
trees. The algorithm’s guarantees hold for a class of
trees that arise naturally in sensor networks; we also
present a new tree construction algorithm well-suited
to generating trees in this class. In addition, we give
a multi-path algorithm for frequent items that is con-
siderably more accurate than previous approaches.

e We provide an extensive evaluation of Tributary-Delta
aggregation on a realistic sensor network simulator, us-
ing real-world and synthetic data sets, confirming the
significant advantages of our techniques. For example,
in computing Count under typical loss rates (0 —40%),
Tributary-Delta reduces errors by up to a factor of 3
compared to the best existing approach for that rate.

Although the general framework encompasses optimizing
many possible metrics based on the criteria in Table 1, in
this paper we focus on the following setting. Users provide
target thresholds on both the communication error (e.g., at
least 90% of the nodes should be accounted for in the an-
swer) and the approximation error (e.g., the answer should
be within 10% of the actual answer of the query applied to
the “accounted for” nodes). Our goal is to achieve these
thresholds while incurring minimal latency, using a minimal
number of messages, and minimizing the message size.

Roadmap. Section 2 describes background information
and related work. Section 3 overviews our Tributary-Delta
approach. Section 4 presents our adaptation design. Sec-
tion 5 discusses Tributary-Delta algorithms for many aggre-
gates. Section 6 presents our frequent items algorithm. Sec-
tion 7 presents our experimental results. Finally, Section 8
presents conclusions.

2. PRELIMINARIES AND RELATED WORK

There has been a flurry of recent papers on energy-efficient,
in-network computation of aggregate queries in sensor net-
works [5, 6, 8, 10, 11, 15, 18, 21]. As discussed in Section 1,
this previous work can be classified according to the aggre-
gation topology used: tree-based or multi-path-based. In
this section, we describe these two approaches in more de-
tail and survey the related work. We begin by describing
the general set-up used in this paper.

Aggregation Set-up. We have m sensor nodes each gen-
erating a stream of sensor readings. The sensor nodes are
connected (either directly or via other sensor nodes) to a
base station. Aggregate queries, which may be one-time or
continuous, are sent from the base station to all the nodes.
Queries may aggregate over a single value at each sensor
(e.g., the most recent reading) or over a window of values
from each sensor’s stream of readings. Each sensor node
evaluates the query locally (including any predicates), and
produces a local result. There is an aggregation topology
(e.g., tree or rings) that is used to route these local results to

the base station, combining them along the way into concise
partial results. For continuous queries, the process of com-
puting, routing and combining local results repeats itself at
regular intervals, possibly in a pipelined fashion within the
network [10].

We consider the realistic setting where the communica-
tion between sensors may be lossy, and network conditions
change over time. In evaluating the quality of an answer, we
consider both the communication error, which results from
message losses in the network, and the approximation error,
which results from lossy data reduction performed to reduce
message lengths [15].

Tree-Based. In the tree-based approach [6, 8, 10, 11, 18,
21], a spanning tree rooted at the base station is constructed
for use in answering queries. Each node computes its level
(i.e., minimum number of hops from the root) in the tree
during this construction by adding one to the level of its par-
ent. In-network aggregation proceeds level-by-level toward
the root, starting with the nodes at the highest level. To
coordinate the sending and receiving of messages, nodes are
loosely time synchronized and are allotted specific time in-
tervals (according to their level) when they should be awake
to send and receive messages. In this way, level ¢ nodes are
listening when level i + 1 nodes are sending. The period of
time allotted for exchanging messages between two levels is
called an epoch [10]. Epochs must be sufficiently long such
that each sensor in a level can transmit its message once
without interference from other sensors’ transmissions. The
latency of a query result is dominated by the product of the
epoch duration and the number of levels.

To adapt the tree to changing network conditions, each
node monitors the link quality to and from its neighbors [23].
This is done less frequently than aggregation, in order to
conserve energy. If the relative link qualities warrant it, a
node will switch to a new parent with better link quality,
in order to make the tree more robust [23]. However, be-
cause each lost message drops an entire subtree, even trees
with high link quality produce very inaccurate answers once
the tree is beyond a certain size. This inaccuracy has been
previously studied [15] and can also be seen in Figure 2.

A key advantage of using a tree topology is that aggregat-
ing within the network is often straightforward, using min-
imal resources and incurring no approximation error. For
example, for a Sum query, each node transmits the sum of
the readings in its subtree, by listening for its children’s sub-
tree sums, adding them to its own readings, and sending the
result to its parent. In the absence of communication error,
the resulting sum would be exact.

Multi-Path-Based. The multi-path-based approach [5,
15] allows for arbitrary aggregation topologies, beyond a
tree. Note that multi-path aggregation in general does not
require a longer epoch length [15]. In this paper, we focus
on the rings topology, because it provides a good energy-
robustness trade-off [5, 15]. To construct a rings topol-
ogy, first the base station transmits and any node hear-
ing this transmission is in ring 1. At each subsequent step,
nodes in ring ¢ transmit and any node hearing one of these
transmissions—but not already in a ring—is in ring ¢ 4 1.
The ring number defines the level of a node in the rings
topology. Aggregation proceeds level-by-level, with level
¢ + 1 nodes transmitting while level ¢ nodes are listening.
In contrast to trees, the rings topology exploits the wireless
broadcast medium by having all level ¢ nodes that hear a



level ¢ + 1 partial result incorporate that result into their
own. This significantly increases robustness because each
reading is accounted for in many paths to the base station,
and all would have to fail for the reading to be unaccounted
for in the query result. As with trees, nodes can monitor
link quality and change levels as warranted.

A key advantage of using a rings topology is that the
communication error is typically very low, in stark contrast
with trees. This can be seen in Figure 2, where the accuracy
of multi-path decreases very slowly with increasing loss rates
(the approximation error is around 12% in this experiment,
independent of the loss rate). Moreover, the rings approach
is as energy-efficient as the tree approach (within 1% [15]).

However, because each partial result is accounted for in
multiple other partial results, special techniques are required
to avoid double-counting. Previous work has shown how to
avoid double-counting in computing Count, Sum, and many
other aggregates [5, 15]. For this paper, we adopt our ter-
minology of [15], where the multi-path approach is called
synopsis diffusion.? There are three functions used to com-
pute an aggregate: (1) A synopsis generation (SG) function
that takes a stream of local sensor readings at a node and
produces a partial result, called a synopsis; this function is
applied by each node on its local readings. (2) A synopsis fu-
sion (SF) function that takes two synopses and generates a
new synopsis that summarizes both; this function is applied
when combining partial results in-network. (3) A synopsis
evaluation (SE) function that translates a synopsis into a
query answer; this function is applied at the base station.

We next illustrate these functions using the Count aggre-
gate; this example highlights one of the clever techniques
used to avoid double-counting in the multi-path approach.

Example 1. Consider answering a Count query request-
ing the number of live sensors. To avoid double-counting,
we view the Count query as a Count Distinct sensor-id
query, and use a well-known distributed distinct-values count-
ing algorithm [7], as follows [5, 15]. Let n be a (possibly
loose) upper bound on the total number of sensors. The
synopsis is a bit vector of log(n) bits. Let A() be a hash
function from sensor-ids to [1..1log(n)] such that a random
% of the domain maps to 1, % maps to 2, % maps to 3,
etc. The SG function creates a bit vector of all 0’s and
then sets the h(:)’th bit to 1, where 7 is the sensor node’s
unique sensor-id. The SF function takes two bit vectors and
outputs their bit-wise OR. The SE function takes a bit vec-
tor and outputs 2j71/0.77351, where j is the index of the
lowest-order unset bit. The approximation guarantees are
provided in [7]—intuitively, if no node sets the jth bit then
there are probably less than 27 nodes. The algorithm avoids
double-counting, intuitively, because each sensor i is asso-
ciated with the h(i)’th bit being set and ORing that bit in
multiple times is identical to ORing it in just once. The ac-
curacy of this algorithm can be improved by using multiple
bit vectors based on different hash functions, at a cost of
sending longer messages [5, 15].

Other Related Work. Many papers have presented tech-
niques for computing aggregates over data streams, includ-

2For readers familiar with the synopsis diffusion framework,
note that we will deviate slightly from [15] for some of the
aggregates discussed in the paper (Frequent Items, Quan-
tiles), by relaxing the requirement that the same synopsis
be generated regardless of the aggregation topology.

Figure 3: Combining Tree and Multi-path algo-
rithms for computing Count in the Tributary-Delta
framework. Bit vector (bv) is the multi-path synop-
sis for the Count aggregate [5, 7].

ing distributed data streams (see [2, 14] for surveys). Sev-
eral recent papers [4, 20] have proposed duplicate-insensitive
multi-path in-network aggregation techniques for peer-to-
peer networks or mobile environments. None of their tech-
niques are suitable for the sensor network setting in which
reducing energy consumption is of paramount importance.
In summary, none of the previous work has proposed and
studied combining the complementary strengths of the two
approaches in order to obtain the best of both (and more).

3. TRIBUTARY-DELTA APPROACH

In our Tributary-Delta aggregation scheme, we leverage
the synergies between the existing energy-efficient schemes,
by combining the efficiency and accuracy of (small) trees un-
der low loss rates with the robustness of multi-path schemes.
Specifically, part of the network runs a multi-path scheme
while at the same time the rest of the network runs tree
schemes. In the extreme, all nodes might either run a multi-
path or a tree scheme. We dynamically adjust the use of
trees and multi-path, based on current message loss rates.
In this section we provide an overview of our Tributary-Delta
scheme.

We begin by defining a directed graph G representing the
aggregation topology during a Tributary-Delta aggregation.
The sensors and the base station form the set of vertices
of GG, and there is a directed edge for each successful trans-
mission. Each vertex is labeled either M (for multi-path)
or T (for tree) depending on whether it runs a multi-path
aggregation algorithm or a tree aggregation algorithm. An
edge is assigned the same label as that of its source vertex.
Note that both the set of edges and the labels of individual
vertices and edges may change over time. Figure 1 depicts
an example graph G, where the edges are directed to the
right in the figure. Figure 3 depicts a portion of another ex-
ample graph, where T1-T5 are 7 vertices and M1-M4 are
M vertices.

There are many ways to construct an aggregation topol-
ogy with both M and 7 vertices. The basic correctness cri-
teria is that no two M vertices with partial results represent-
ing an overlapping set of sensors are connected to a 7 vertex.
This is necessary, since otherwise the corresponding 7 ver-
tex, whose local aggregation algorithm is duplicate-sensitive,
may double-count the same sensor data and provide an in-
correct answer. Formally, for every maximal subgraph G’
consisting of M vertices, there is exactly one vertex m € G’
directly connected to a 7 vertex in G — G’ and every vertex
v € G’ has a path to m. Ensuring this requires electing a
suitable leader (m) within G’. This general construction,
although achievable, thwarts our objectives: it restricts the



amount of available redundancy an M vertex can exploit
and the leader election process complicates the aggregation
process.

We therefore restrict ourselves to a simpler model where
a sensor receiving a partial result from an M vertex uses a
multi-path aggregation scheme. This ensures that a partial
result from an M vertex never reaches a 7 vertex down-
stream towards the base station, and therefore a 7 node
never gets the chance to double-count sensor data.

In terms of the graph, this correctness condition can be
formulated as either an Edge Correctness property (Prop-
erty 1) or a Path Correctness property (Property 2). The
two properties are equivalent—both formulations are useful
depending on the context.

ProPERTY 1. Edge Correctness: An M edge can never
be incident on a T vertex, i.e., an M edge is always between
two M vertices.

PrOPERTY 2. Path Correctness: In any directed path
in G, a7 edge can never appear after an M edge.

An implication of path correctness is that the M vertices
will form a subgraph (a multi-path “delta”) that includes
the base station, which is fed by trees of 7 vertices (“tribu-
taries”), as depicted in Figure 1. Let the delta region of G be
the set of M vertices. Coincidentally, any graph G satisfying
path correctness is also desirable for high accuracy—partial
results near the base station account for larger numbers of
sensor readings than partial results near the leaves of G, and
hence the additional robustness provided by the delta region
significantly improves answer accuracy.

Our Tributary-Delta scheme requires multi-path algorithms
that can operate on (approximate or exact) partial results
from both tree and multi-path schemes. For example, M3 in
Figure 3 receives inputs from both a 7 vertex and two M
vertices. We address this algorithmic challenge in Section 5.

Dynamic Adaptation. Our goal is to dynamically adapt
where in the sensor network we use trees versus where we
use multi-path, based on current message loss rates in vari-
ous regions of the network. However, an implication of edge
correctness is that individual vertices cannot switch between
the two modes independently. We say an M vertex is switch-
able (to a T vertex) if all its incoming edges are 7 edges or
it has no incoming edges. Similarly, a 7 vertex is switchable
if its parent is an M vertex or it has no parent. In Figure 3,
vertices T3, T4, T5, M1, and M2 are switchable. Based on
these two definitions, we make the following observation.

OBSERVATION 1. All children of a switchable M wvertex
are switchable T wvertices.

Note that a delta region uniquely defines the set of switch-
able M and 7 vertices in G. The next lemma implies that
by considering only the switchable T and M vertices, it is
always possible to expand (or shrink) the delta region if it
makes sense to do so. Let G’ be the connected component of
G that includes the base station. Then expanding (shrink-
ing) the delta region only makes sense if there is a 7 vertex
(an M vertex, respectively) in G’. A simple induction proof
yields the following result:

LEMMA 1. If the set of T wvertices in G’ is not empty, at
least one of them is switchable. If the set of M wvertices in
G’ is not empty, at least one of them is switchable.

Proor. If the base station is a 7 vertex, it is switch-
able by definition. Otherwise, either there is a 7 vertex in
the next level (which would be a switchable vertex) or all
nodes in next level are M. In this latter case, the argument
proceeds inductively.

Similarly, if at least one leaf vertex (vertices with no in-
coming edges) is an M, that vertex is switchable. Other-
wise, all leaves are 7 vertices and we proceed inductively by
considering vertices whose children are all leaves. []

In the next section, we study strategies for adapting the
tributary and delta regions to changing network conditions.

4. ADAPTING TONETWORKCONDITIONS

In this section we study in detail how our Tributary-Delta
scheme dynamically adapts to changing network conditions.

4.1 Adaptation Design

We first discuss a number of practical issues that arise in
designing our adaptation strategies.

Adaptation Decision. Recall from Section 3 that the only
possible ways to adapt to changing network conditions are
(1) to shrink the delta region by switching switchable M ver-
tices (multi-path nodes) to 7 vertices (tree nodes) or (2) to
expand the delta region by switching switchable 7 vertices
(tree nodes) to M vertices (multi-path nodes). However,
because of the different types of errors introduced by the
tree and multi-path schemes (recall Table 1), it is unclear
how switching one or more nodes impacts the answer ac-
curacy. Therefore, we require users to specify a threshold
on the minimum percentage of nodes that should contribute
to the aggregate answer. It then becomes natural for the
base station to be involved in the decision process: depend-
ing on the % of nodes contributing to the current result,
the base station decides whether to shrink or expand the
delta region for future results. Because there is only mini-
mal communication error in multi-path schemes (recall Fig-
ure 2), increasing the delta region always increases the %
contributing. Similarly, decreasing the delta region always
decreases the % contributing. The system seeks to match
the target % contributing, in order to take advantage of the
smaller approximation error in tree aggregation. Because
this design does not rely on the specifics of any one query,
the resulting delta region is effective for a variety of con-
currently running queries. Designs specialized to particular
queries are part of our future work.

Synchronization. A key concern in switching individual
nodes from tree aggregation to multi-path aggregation (and
vice-versa) is how to ensure that nodes that should be com-
municating after the switch are indeed sending and receiving
during the same epoch. When a node switches from M to
T, it needs to change its sending epoch to match its new par-
ent’s listening epoch and change its new children’s sending
epoch to match its listening epoch, etc. Conversely, when a
node switches from 7 to M, it needs to change its sending
epoch to match the listening epoch of its neighboring nodes
in the next level and change its children’s sending epoch to
match its listening epoch, etc. This re-synchronization over-
head could arise, for example, if TAG [10], a popular tree
aggregation approach, were to be used together with rings
for multi-path, and it would be a large deterrent to switch-
ing between tree and multi-path schemes. To ensure that no



such re-synchronization is necessary, we make a simplifying
design choice: a node in level i when switching from M to
7T must choose its tree parent from one of its neighbors in
level ¢ — 1. Similarly, when the node switches from 7 to
M, it transmits to all its neighbors in level ¢ — 1, including
its parent. In other words, all tree links should be a sub-
set of the links in the ring. This ensures that the switched
node can retain its current epoch, since the new parent in
level i — 1 is already synchronized to receive data from the
node in level ¢. Trees constructed with this restriction may
have inferior link quality; however, this is mitigated with
Tributary-Delta because (1) we use multi-path to overcome
poor link quality and (2) our tree construction algorithm
(see Section 6.1.3), which guarantees that tree links are a
subset of rings links, produces bushy trees that are effective
in reducing total communication errors.

Oscillation. Base station’s desire to match the accuracy
of the final result to the user-defined threshold may lead to
a repeated expansion and shrinking sequence of the delta
region. This can happen when expansion of the delta region
improves the accuracy to significantly above the threshold
so that for reducing the overhead of multi-path aggrega-
tion, the base station decides to shrink it; and shrinking the
delta region reduces the accuracy to below the threshold,
and hence it needs to be expanded again. This situation can
be common when a large number of nodes simultaneously
switch their states. Such an oscillation can unnecessarily
increase the adaptation overhead. There are two ways to
prevent such oscillations. First, the delta region can be ex-
panded or shrunk at a small granularity, e.g., one node at a
time. After a small adjustment of the delta region boundary,
the base station can wait to see the result of the adjustment
before further adjustment. Second, the base station can use
heuristics to damp down the oscillation. For example, if it
experiences a repeated sequence of expansion and shrinking,
it can simply stop the repetition or can gradually reduce the
frequency of adjustments.

4.2 Adaptation Strategies

In this section, we present two alternative strategies to
shrink and expand the delta region. In both strategies, we
augment the messages being sent between nodes with an
(approximate) Count of the number of nodes contributing
to the partial result being sent. Assuming that the base
station knows the number of sensors in the network, it can
compute the % contributing to the current result.

Strategy TD-Coarse. In the first strategy, TD-Coarse, if
the % contributing is below the user-specified threshold, the
base station expands the delta region by broadcasting a mes-
sage asking all the current switchable 7 nodes to switch
to M nodes. This effectively widens the delta region by
one level. Similarly, if the % contributing is well above
the threshold, it shrinks the delta region by one level by
switching all current switchable M nodes to 7 nodes. The
coarse-grained control of TD-Coarse is well-suited to quickly
adapting the size of the delta region to network-wide fluctu-
ations. However, it can not adapt well to different conditions
in different parts of the network; for this, we introduce the
following more fine-grained strategy.

Strategy TD. In the second strategy, TD, we use the exis-
tence of the parent-child relationship among switchable M
nodes and switchable 7 nodes (Observation 1), as follows.
Each switchable M node includes in its outgoing messages

an additional field that contains the number of nodes in its
subtree that did not contribute.> As the multi-path aggre-
gation is done, the maximum, maz, and the minimum, min,
of such numbers are maintained. If the % contributing is
below the user-specified threshold, the base station expands
the delta region by switching from 7 to M all children of
switchable M nodes belonging to a subtree that has max
nodes not contributing. In this way, subtrees with the great-
est robustness problems are targeted for increased use of
multi-path. Shrinking is done by switching each switchable
M node whose subtree has only min nodes not contribut-
ing. The fine-grained control of TD facilitates adapting to
non-uniform network conditions, at a cost of higher con-
vergence time and additional message overhead because the
base station needs to send one message every time it switches
a small number of nodes. Note that there are many possi-
ble heuristics to improve the adaptivity of TD, such as using
maz/2 instead of maz or maintaining the top-k values in-
stead of just the top-1 value (maz). Exploration of optimal
heuristics is part of our future work.

5. COMPUTING SIMPLE AGGREGATES

To compute an aggregate in our Tributary-Delta frame-
work, we need a corresponding tree algorithm, a multi-path
algorithm, and a conversion function that takes a partial re-
sult generated by the tree algorithm and outputs a synopsis
that can be used by the multi-path algorithm. For example,
in Figure 3, the node M3 receives two multi-path partial re-
sults (denoted as bv) and one tree partial result (3). The
conversion function needs to transform the tree result to a
synopsis so that M3 can use its synopsis fusion function to
combine it.

The synopsis generated by the conversion function must
be valid over the inputs contributing to the tree result. For
example, the conversion function for the Count aggregate
of Example 1 (Section 2) should take the output of the tree
scheme—a subtree count c—and generate a synopsis that the
multi-path scheme equates with the value c. Intuitively, this
enables a node running a multi-path algorithm to become
oblivious to whether an input synopsis is from a multi-path
node or the result of a conversion function applied to a tree
result.

Many aggregates (e.g., Count, Sum, Min, Max, Average,
Uniform sample, etc.) with known efficient multi-path [15]
and tree algorithms have simple conversion functions*, and
hence can be efficiently computed in our Tributary-Delta
framework. Moreover, the Uniform sample algorithm can be
used to compute various other aggregates (e.g., Quantiles,
Statistical moments) using the framework.

However, there are no previous, efficient multi-path al-
gorithms for identifying frequent items in sensor networks.

3Note that there is no double-counting here because it fol-
lows from the path correctness property that the node is the
root of a unique subtree.

4Since the multi-path algorithms for computing Min, Max,
and Uniform sample (using our approach in [15]) have no
approximation error, the tree algorithms can be same as
their multi-path counterparts. For these aggregates then,
the “identity function” suffices as the conversion function.
For the Count and Sum aggregate, the Sum synopsis gen-
eration function [5] can be used as the conversion function.
Lastly, a separate conversion function for Average is not
required since Sum and Count can be used to compute Av-
erage.



This is an important aggregate particularly in the context
of biological and chemical sensors, where individual read-
ings can be highly unreliable and it is necessary to get a
consensus measure [18]. In the next section, we present an
algorithm to do so, as well as an efficient tree algorithm and
the corresponding conversion function. Together, these en-
able computing frequent items in our Tributary-Delta frame-
work.

6. IDENTIFYING FREQUENT ITEMS

In this section we present the first energy-efficient Tribut-
ary-Delta algorithm for finding frequent items, describing
first the tree scheme (Section 6.1), then the multi-path scheme
(Section 6.2), and finally the conversion function (Section 6.3).

Following [13, 12], we consider the following formulation
of the frequent items problem. Each of the m sensor nodes
generates a collection of items. For example, an item can
be a value of a sensor reading at a particular point in time.
The same “item” may appear multiple times at one or more
sensor nodes. Let c(u) be the frequency of occurrence of item
u over all m nodes. Given a user-supplied error tolerance
€, the goal is to obtain for each item u, an e-deficient count
¢(u) at the base station, where each ¢(u) satisfies

max {0, c(u) —e-N} < é(u) < c(u)

and N denotes the sum of item occurrences across all items,
ie, N =3 c(u). By computing e-deficient counts, com-
munication is not wasted aggregating counts for rare items
(i.e., items with c(u) < e-N). Moreover, for small € values,
little error is introduced by using e-deficient counting for
frequent items (i.e., items with c(u) > eN). Given a user
specified support threshold s (s > €), similar to [13, 12], we
report as frequent all items with e-deficient counts greater
than (s—e)N, thus ensuring that there are no false negatives,
and all false positives have frequency at least (s — €)N.

6.1 Tree Algorithm

In this subsection, we present our tree-based frequent items
algorithm, MIN TOTAL-LOAD, the first algorithm for iden-
tifying frequent items that uses only O(™) words® of total
communication, which is optimal. The algorithm’s guaran-
tees hold for a class of trees that arise naturally in sensor
networks. Previous tree-based frequent items algorithms [8,
12, 18] provided only a weak bound of O(logm) on to-
tal communication, even for the simplified case of balanced,

regular trees.

6.1.1 Solution Approach and Challenges

A useful data structure encapsulating the partial result
sent by a node X to its parent is a summary, defined as
follows. A summary S = (N, €, {(u,é(u))}) includes a (pos-
sibly empty) set of items u and their estimates é(u). Each
estimate ¢(u) satisfies max {0,c(u) —e-N} < é(u) < e(u),
where N = 3" ¢(u) such that c(u) is the frequency of item u
in the (multi-set) union of the multi-sets belonging to nodes
in the subtree rooted at X. The salient property of a sum-
mary is that items with frequency at most €- N need not be
stored, resulting in a smaller-sized summary and therefore,
less communication.

5We adopt the standard convention that a word holds one
item or one counter.

Algorithm 1: Generate a e(k)-summary (executed by all
nodes, where k is the height of the node)

Input: summaries S; = (nj,€5,{(u,é;(w))}) from each child
j among the node’s children C, and its own summary S’ =

(n',0,{(u, & (u))})
Output: single e(k)-summary S = (n, e(k), {(u, c(u))})

1. Set n:= > n;+n
jec
2. Foreach u € U §; US', set ¢(u) := Y ¢&;j(u) + & (u)
Jec jec
3. For each u € S, set &(u) 1= &(u) — (e(k)'n — > ;cc € ny)
and if ¢(u) < 0 remove (u,é(u)) from S

Our approach (similar to [8, 12]) is to distribute the e
error tolerance among intermediate nodes in the tree. We
make the error tolerance a function of the height of a node,
which is defined recursively as follows: the height of a leaf
node is 1; the height of any other node is one more than the
maximum height of its children. Let €() denote the error
tolerance of a node with height i.

Algorithm 1 presents the steps to generate a summary
for a node X of height k, for a generic setting of the €(4)’s.
Proceeding level-by-level up the tree, each node uses Algo-
rithm 1 to generate an e(k)-summary, until at last the base
station outputs an e(h)-deficient count for each item, where
h is the height of the base station. For correctness, we need
e(l) < €(2) < ... <¢€(h). As long as ¢(h) < ¢, the user-
specified guarantee is met. The sequence €(1),...,€e(h) is
called the precision gradient [12], because the precision of
the data gradually decreases as it traverses the aggregation
tree.

Thus far the approach has been similar to [12]. The key
new challenge we address is how to set a precision gradient
that minimizes the worst case total communication and is
not restricted to balanced, regular trees. Note that when
minimizing the mazimum load on a link, as considered in
previous approaches [8, 12], it suffices to bound the load on
each link. This is a local property: for a node of height k,
Step 3 of Algorithm 1 implies that estimates for at most
m items will be present in the summary it sends on
its outgoing link [12]. Total communication, however, is a
global property, and requires minimizing a sum. Indeed, it
is not obvious how to set the precision gradient to achieve
optimal total communication, even for regular trees.

6.1.2 Solution: Themnin Torar-roap Algorithm

We provide intuition for our solution by first considering
a balanced, regular tree of degree d. In such trees, the num-
ber of nodes at height k is a ﬁ—th fraction of the number at
height 1. Moreover, as discussed above, the maximum num-
ber of counters sent by a node at height k is m
Thus the total communication from height k£ nodes is pro-
portional to the product of m and —. To minimize
total communication, it is then necessary to have large dif-
ferences €(k) — e(k — 1) when k is small, so that the total
number of counters sent by the numerous height k nodes is
kept small. On the other hand, large differences for smaller
k’s leave only small differences for larger k’s, because the
sum of all the differences is at most €. Thus for larger k’s,
the m term is much larger than for smaller k’s.
Hence, care must be taken to ensure that the total number
of counters sent is kept small even for larger k’s, by keeping
the term from getting too large. Our solution MIN TOTAL-



Example Tree Te Regular Tree T»
1 2 3 4 1 2 3
(z) 37 10 6 1 8 4 2

H (i) 3r 4r 53 54 | 8 12 14
54 54 54 54 15 15 15
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Table 2: Example of a 2-dominating tree.

LOAD balances the allocation by setting €(1) to be a constant
fraction of the final €, and then making m vary as

c* for some ¢ < d so that the total number of counters (the
product of m and dik) that could possibly be sent
by all nodes at height k still decreases with increasing k. To
extend our solution to non-regular trees, we exploit the ob-
servation that the maximum possible total communication
of a tree (with our solution) can only decrease if nodes in
an (initially balanced, regular) tree are replaced by nodes of
lesser height.

d-dominating tree. MIN TOTAL-LOAD is based on the
notion of a d-dominating tree, which we define as follows.
For any tree, let H (i) denote the fraction of nodes having
height at most 4. Mathematically, H(i) = izz'.:l h(5),
where h(j) denotes the number of nodes at height j and m
denotes the total number of nodes. For any d > 1, we say
that a tree is d-dominating if for any i > 1, H(i) > 42 (1+
L4...+ 7). Note that for any tree, h(i) is monotonically
non-decreasing as ¢ increases, so every tree is 1-dominating.
From the definition of a d-dominating tree, it follows that
a tree that is (d 4+ 0)-dominating is also d-dominating for
any § > 0. Also, given any tree and a precision §;1 > 0, we
can always find some d such that the tree is d-dominating,
but not (d + d1)-dominating. We refer to such a d as the
domination factor for the tree.

A relatively straightforward induction proof yields the fol-
lowing result:

LEMMA 2. A tree in which each internal node of height i
has at least d children of height i — 1 is d-dominating.

Example 2. Consider a tree T. with height 4 and h(7)
values as shown in Table 2. The table also shows the h(i)
and the H (i) value of a completely balanced, regular tree
T of height 4 and degree 2. As the table shows, for all i,
H(i) of T. is at least H (i) of T>. From Lemma 2, we know
that T> is 2-dominating. Therefore, the example tree is 2-
dominating. Assuming the granularity of d is 0.05, it can be
shown that T, has a domination factor of 2 (i.e., T¢ is not
2.05 dominating).

We are now ready to present the precision gradient set-
tings for our MIN TOTAL-LOAD algorithm:

LEMMA 3. For any d-dominating tree of m nodes, where
d > 1, a precision gradient setting of (i) = e-(1 — t)(1 +
t+ ...+t witht = Wz limits total communication to
I+ 7

PROOF. In Step 3 of Algorithm 1, the frequency estimate
of each item u is decremented by at least n-(e(i) — e(i —
1)). Slnce Y ues E(u) < n, frequency estimates for at most
m items are sent by a node at height ¢ to its parent.

Furthermore, because the maximum number of possible
estimates a node at height ¢ can send on its outgoing link in-
creases with its height (o di/2), the total communication for
a d- dominating tree is bounded by a (hypothetical) tree in

which exactly 4% d1 ——1 fraction of the nodes occur at height

i. Therefore, the total communication is bounded by:
—m(d—1) 1 _ —1) «— 1
; d( dZ D (e(d) —e(i—1)) -1) ; di=1)/2

cm_d-1 :@x/EH:@(H 2 ) .
€(Vd-1)2 €Vd-1 ¢ Vd—1
OBSERVATION 2. As the constant factor (l—l—ﬁ) shows,
total communication decreases as d increases. Therefore, it
is desirable to have aggregation trees which are d-dominating
for large d values.

eVd

6.1.3 Trees with Large Domination Factors

As Lemma 3 shows, our MIN TOTAL-LOAD algorithm works
especially well for trees that are d-dominating for high d val-
ues. The chief concern for guaranteeing low communication
is to ensure that the domination factor d is sufficiently far
from 1, say at least 2. In Section 7, we show that a real-
world sensor deployment has a domination factor of 2.25,
suggesting that while it may be infeasible to construct a
regular tree in a sensor network, it may be easy to generate
d-dominating trees for d > 2. Moreover, we show next an
explicit tree construction algorithm that seeks to increase
the domination factor.

We modify the standard tree construction algorithm (de-
scribed in Section 2) with two optimizations. First, when a
node in level ¢ chooses its parent, and even when it switches
parents, it selects a node only from level ¢ — 1; the standard
algorithm [10] allows choosing a parent from the same level.
Second, we use the following opportunistic parent switching
technique, inspired by Lemma 2. Each node of height j + 1
that has two or more children of height j, pins down any
two of its height j children, so that they cannot switch par-
ents, and then flags itself. Next, the non-pinned nodes in
each level i switch parents randomly to any other reachable
non-flagged node in level ¢ — 1. As soon as a non-flagged
node has at least two flagged children of the same height,
it pins both of them and then flags itself. This local search
technique quickly makes the tree 2-dominating if there is an
opportunity to do so.

6.1.4 Extensions

Combining Objective Functions. Limiting total com-
munication places an upper bound on the energy usage of
all the sensors. However, in some cases, limiting the maxi-
mum load on a link is also very important [8, 12, 18]. We
now show how to obtain a precision gradient setting that
simultaneously achieves both optimal (within constant fac-
tors) maximum and optimal (within constant factors) total
communication, by combining solutions that are optimal for
each of the two individual metrics. Our combination tech-
nique can easily be generalized to multiple linear communi-
cation metrics, i.e., the communication metric is a weighted
sum, weighted min, or weighted max of the communication
load on the tree links. The following two observations are
the key insights that lead to our technique.

OBSERVATION 3. If each €(i) in a precision gradient set-
ting is diwvided by some constant ¢ > 1, then the worst case
value of any linear communication metric is multiplied by c.



OBSERVATION 4. For some k € [1, h|, if the precision gra-
dient setting is changed so that €(i) is increased for i > k
and left unchanged otherwise, then the value of any linear
communication metric does not increase.

LEMMA 4. Lete® = (e(1)%,...,e(h)%) and &® = (e(1)%, ...,
e(h)®) denote the precision gradient settings that respectively
minimize the total communication and the maximum load

on any link. Then € = (e(1),...,e(h)*) where (i) =
1(€(d)* +€(i)") gives a simultaneous 2-approzimation for to-

tal communication and maximum load on any link.

PRroor. Follows from Observation 3 and Observation 4. [

We call this variant of our algorithm HYBRID, because its
objective function includes both maximum and total com-
munication.

Computing Quantiles. The quantiles algorithm by Green-
wald and Khanna [8] can be extended to use our precision
gradients and hence to achieve useful bounds. For example,
our techniques above for bounding total communication to
O(™) words and for simultaneously bounding multiple com-
munication metrics can be easily extended to the problem
of finding quantiles. As such, they are the first quantiles
algorithms that achieve these bounds. We formally state
the technique analogous to MIN TOTAL-LOAD for comput-
ing quantiles as Corollary 1.

COROLLARY 1. If the quantiles algorithm provided by Green-

wald and Khanna [8] is extended to use precision gradient,
for any d-dominating tree of m nodes, where d > 1, a pre-
cision gradient setting of €(i) = e-(1 —t)(L+t+ ... +t'7h)
with t = ﬁ permits the computation of quantiles with total

2 m
Vd-1 )

6.2 Multi-path Algorithm

We are aware of two previous multi-path algorithms for
computing frequent items. The first algorithm, presented in
[15], performs multi-path counting of the items in the net-
work and keeps track of the items with high count values.
Since the multi-path counting algorithm is approximate, it
can find the frequent items only if they appear significantly
more than the non-frequent items. The second algorithm
computes a uniform sample of the items (which can be com-
puted over multi-path as shown in [15]) and then estimates
the frequent items over that sample. The accuracy of this
algorithm depends on the sample size and the data distribu-
tion. As we show in Section 7, these two algorithms suffer
from relatively high false positive and false negative rates
under a real sensor dataset.We address this problem with
a new multi-path algorithm for finding frequent items with
high accuracy.

Ideally, we would like to base our algorithm on Algo-
rithm 1, adapting it to be duplicate-insensitive so that it
works correctly in the multi-path setting. Steps 1 and 2 of
Algorithm 1 are readily adapted: simply replace the addition
operator in those steps with a known duplicate-insensitive
addition operator (which we will denote @®). Step 3 is more
problematic, however, because it uses a subtraction opera-
tor and no duplicate-insensitive subtraction algorithms exist
that combine high accuracy with small synopses.

communication at most (1 +

Overcoming the Duplicate-Insensitive Subtraction
Problem. Most duplicate-insensitive addition algorithms

Algorithm 2: Synopsis fusion function

Inputs: synopses S1 = (n1,{(u,é1(w))}) and Sz = (n2,{(u,
¢2(u))}), of class i

Output: synopsis S = (n, {(u,é(w))}), of either class i or i+ 1

1. Set n:=n1 ® neo
2. For each item u € (81 U S2), add (u,¢1(u) ® é2(u)) to S

3. If & > 21 then increment the class of S from i to i + 1
and for each item u € (S1 U S2):

if % > n-é(u), drop (u, é(u)) from S (We restrict n > 1)

(& is duplicate-insensitive sum)

(for positive numbers) guarantee that the error in their es-
timates is at most a constant factor of the actual value.
Specifically, for a user-specified relative error €., 0 < €. < 1,
and confidence parameter d., 0 < d. < 1, the estimate is
within a relative error €. of the actual sum with probabil-
ity at least 1 — d.. Because each added item increases the
actual sum, the allowed absolute error increases. If subtrac-
tion were allowed, the actual value would decrease and it
is not known how to achieve a corresponding reduction in
error while preserving a small synopsis.

Our solution is to avoid using subtraction altogether. First,
we note that the primary purpose of the subtraction in
Step 3 is to enable items with small estimated counts to be
dropped from the summary. Instead of subtracting at each
node and dropping the item if its estimate is negative, we
eliminate the subtraction and drop the item if its estimate
is below a rising threshold.

Second, we observe that we do not need highly accurate
duplicate-insensitive addition in our thresholding approach.
If we give ourselves some slack on the threshold, then we can
tolerate less accurate addition and will not drop items we
should not have dropped. We may fail to drop some items
that should be dropped, but this does not change the asymp-
totic communication bounds. The importance of making
use of less accurate addition arises from the fact that known
duplicate-insensitive addition algorithms [3, 4, 5, 15] require
synopses whose size is proportional to }2 When ¢, = %, this

equals 4; when ¢, = ﬁ, this equals 10, 000.

Finally, our algorithm adapts from [8] the concept of classes.
A synopsis is in class 7 if ¢ is the logarithm of the number of
items it represents. The idea is to have the error tolerance
€ of a synopsis vary linearly with its class number and only
combine synopses having the same class. Assuming there
are no duplicates, doing so ensures that there is always an
opportunity for further pruning once any two synopses are
combined. Therefore, a synopsis never becomes too large.
Even with duplicates, as our analysis later shows, the size
of a synopsis does not grow beyond a constant factor of the
case when there are no duplicates. Also, because the count
for the total number of items represented by a synopsis is
approximate (because @ is used), this approximate count de-
termines the class of a synopsis. As long as the relative error
€. for @ is less than 1, there are at most log N + 1 classes of
synopses varying from ¢ = 0,...,log N (/N denotes the total
number of items).

We now describe the components of our multi-path algo-
rithm, using the terminology presented in Section 2.

Synopsis Generation. Each sensor node processes its col-
lection of items by counting item frequencies and discard-
L
Tog N
where n’ is the total number of items in its collection and

ing (pruning) all items u whose frequency is at most



i = |logn’]. Then the node generates a class i synopsis by
using a duplicate-insensitive addition algorithm to compute
a frequency estimate of each remaining item. If the node is
a leaf node, it forwards the synopsis to its parent.

Synopsis Fusion. Each intermediate node, in general, re-
ceives from each of its children at most a single synopsis of
each class. After receiving all synopses from its children,
beginning with the smallest class for which the node has
a synopsis, the node starts combining two synopses of the
same class using Algorithm 2, until it is left with at most
one synopsis of each class. It then transmits the resulting
collection of synopses to its parent. The parameter i con-
trols the accepted slack in the thresholding procedure, as a
function of the error parameter e..

Synopsis Evaluation. Finally, at the base station, the
frequency estimates corresponding to an item are simply
added (again using @) across all the different log N classes.

Accuracy and Communication Bounds. The accuracy
and communication bounds of our algorithm are summa-
rized in the following theorem. The bounds are in terms of
the number of sensors m, the total number of items NV, the
user-specified error tolerance € and confidence parameter 9§,
and the relative error parameter €. of @, where €, §, and
€. are each between 0 and 1. In addition, the bound as-
sumes that the duplicate-insensitive sum operator @ is also
accuracy-preserving, as defined next.

DEFINITION 1. Suppose X (., s.) denotes an (ec, d. )-estimate

of a scalar X, with a relative error of €., and a confidence
parameter of .. Then, the operator @ is called an accuracy
preserving duplicate-insensitive sum operator if X, s5.) @
Yie..50) = Z(eo,5.), where Z = X +Y.

An example of an accuracy preserving duplicate-insensitive
sum operator can be found in [3].

THEOREM 1. When @ is an accuracy preserving duplicate-
insensitive sum operator, then with probability at least 1 — 9,
for all items u, the algorithm produces estimated frequencies
é(u) such that (1 —e.)(c(u) — eN) < é(u) < (14 ec)e(u).
log? N o1

Moreover, the mazimum load on a link is O i
2

10g(%)) memory words.

The proof is provided in Appendix A.
6.3 Tributary-Delta Algorithm

Recall from the discussion in Section 5 that to combine
tree and multi-path algorithms, we need a conversion func-
tion that takes a partial result generated by the tree al-
gorithm and outputs a synopsis that can be used by the
multi-path algorithm. For frequent items, when using our
tree and multi-path algorithms provided in Section 6.1 and
Section 6.2 respectively, this conversion function can simply
be the synopsis generation (SG) function of our multi-path
algorithm, applied to the estimated frequencies of the tree
algorithm. Specifically, we take the summary (n,e(k), {(u,
¢(u))}) from Algorithm 1 and view é(u) as the actual fre-
quency to which we apply the thresholding test of SG (Sec-
tion 6.2), letting the n’ in SG be the n from the summary,
in order to create the synopsis. In this way, the final er-
ror in estimating the frequency of an item is at most the
sum of the errors in the tree and the multi-path algorithm.
So, given a user-specified error €, we can obtain (approxi-
mate) e-deficient counts in the Tributary-Delta framework,

by running our tree-algorithm with error tolerance €, (where
€(k) < €,) and our multi-path algorithm with error tolerance
€, such that e, + e, = €.

7. EXPERIMENTAL RESULTS

In this section we evaluate our two proposed Tributary-
Delta approaches, TD-Coarse and TD, in varying network
conditions, using existing tree and multi-path approaches
as baselines. We begin in Section 7.1 by describing the
real-world data and the simulation environment we used.
Then, in Section 7.2, we show the different ways in which
TD-Coarse and TD adapt to changes in network conditions.
Using a simple aggregate (Sum), we report the error re-
ductions due to our proposed approaches over the baseline
approaches in Section 7.3. Then, in Section 7.4, we pro-
vide measurements of communication load for our frequent
items algorithm MIN TOTAL-LOAD in both tree and multi-
path scenarios, and evaluate TD-Coarse and TD for this more
complex aggregate. Finally, in Section 7.5, we summarize
the results.

7.1 Methodology

We implement TAG [10], SD [15] and our proposed Tributary-
Delta approaches, TD-Coarse and TD, within the TAG sim-
ulator [10]. TAG is a tree-based aggregation approach used
by TinyDB [10], whereas SD (for Synopsis Diffusion) is a
multi-path aggregation approach over Rings [15]. In each
simulation run, we use Sum as the aggregate collecting an
aggregate value every epoch for 100 epochs, unless noted
otherwise. We begin data collection only after the under-
lying aggregation topologies become stable. In all the ex-
periments, we use a variant of [7] (as in [5]) for achiev-
ing duplicate-insensitive addition. We allow the Tributary-
Delta approaches to adapt their topologies every 10 epochs.
Recall from Section 4 that the adaptivity decisions in our
proposed approaches are guided by a threshold on the per-
centage of nodes contributing to the aggregate. We use 90%
as the threshold. We use 48-byte messages, as used by the
TinyDB system. This allows us to fit 40 32-bit Sum synopses
(with the help of run-length encoding [16]) within a single
message, and produce an approximate Sum based on the
average of these 40 estimates.

Scenarios. We use LABDATA, a scenario reconstructing a
real deployment, and SYNTHETIC, a synthetic scenario with
several failure models, for our experiments. Using actual
sensor locations and knowledge of communication loss rates
among sensors, LABDATA simulates a deployment of 54 sen-
sors recording light conditions in the Intel Research Berkeley
laboratory [9]. The dataset contains around 2.3 million sen-
sor readings. The SYNTHETIC scenario is a deployment of
600 sensors placed randomly in a 20 ft x 20 ft grid, with a
base station at location (10,10). We study two failure mod-
els for SYNTHETIC: GLOBAL(p), in which all nodes have a
message loss rate of p, and REGIONAL(p1,p2), in which all
nodes within the rectangular region {(0,0), (10,10)} of the
20 x 20 deployment area experience a message loss rate of
p1 while other nodes have a message loss rate of ps.

7.2 AdapthIty of TD-Coarse and 1o

To demonstrate the different ways in which our two strate-
gies adapt to changes in network conditions, we study the
SYNTHETIC scenario under the two failure models. First, we
apply the GLOBAL(p) failure model with increasing values
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Figure 4: Evolution of the TD-Coarse and TD topologies for varying loss rates. Each dot depicts a sensor located
at the given coordinates in the deployment area. The larger dots comprise the delta region. The base station

is at (10, 10).

of p. Figure 4(a) and Figure 4(b) show snapshots of the
TD-Coarse approach when the loss rates are 0.2 and 0.3 re-
spectively. As expected, the delta region expands as the loss
rate p increases—depicted by an increase in the number of
larger dots from Figure 4(a) to Figure 4(b). The snapshots
for the TD approach are similar, except that the delta region
increases gradually, instead of expanding by all switchable
nodes at a time.

Second, we apply the REGIONAL(p1, p2) failure model with
increasing p; and a fixed p2 = 0.05. In TD-Coarse, because
the delta region expands uniformly around the base station,
all nodes near the base station are switched to multi-path,
even those experiencing small message loss. In TD, this prob-
lem does not arise because the delta region expands only in
the direction of the failure region. Figure 4(c) and Fig-
ure 4(d) capture pictorially the response of TD to such lo-
calized failures. Even at a high loss rate, in TD, the delta
region mostly consists of nodes actually experiencing high
loss rate.

7.3 Evaluation using a Simple Aggregate

In this section we evaluate the error reduction of our two
proposed approaches, TD-Coarse and TD, in varying network
conditions, using the TAG and SD approaches as baselines.
We restrict ourselves to simple aggregates like Count and
Sum for which the partial results can fit in a single TinyDB
packet for both TAG and SD. To ensure that all approaches
use comparable energy levels, we disallow retransmissions
(as in the original TinyDB implementation).

We measure the error as the relative root mean square

(RMS) error—defined as %\/Zle(vt —V)2/T, where V is
the actual value and V; is the aggregate computed at time

t. The closer this value is to zero the closer the aggregate is
to the actual value.

Real scenario. We find the RMS error in evaluating the
Sum aggregate on LABDATA to be 0.5 for TAG and 0.12 for
SD. Both TD and TD-Coarse are able to reduce the error to
0.1 by running synopsis diffusion over most of the nodes.

Synthetic scenarios. For the remainder of this section, we
use SYNTHETIC scenarios. Figure 5(a), the complete graph
for Figure 2, presents the RMS error of different schemes
under the GLOBAL(p) failure model. At all loss rates in both
cases, the error for either TD-Coarse or TD is no worse than
the minimum of TAG or SD. In particular, the error is reduced
significantly at low loss rates (0 < p < 0.05), when some
tree nodes can directly provide exact aggregates to the base
station. This effect is more pronounced in Figure 5(b) with

RMS Error
RMS Error

0 025 05
Loss Rate p
(a) GLoBAL(p) failure

0.75 1 0 0.75 1
Loss Rate p

(b) REGIONAL(p, 0.05) failure

Figure 5: RMS errors and loss rates.

the TD strategy under a REGIONAL(p, 0.05) failure model. TD
uses multi-path aggregation only in the failure region and so
exact aggregation over a significant portion of nodes can be
carried out using tree aggregation.

Next, to evaluate how well our Tributary-Delta schemes
adapt to dynamic scenarios, starting with the GLOBAL(0)
failure model, we first introduce REGIONAL(0.3,0) at time
t = 100. Then at ¢ = 200, we switch to GLOBAL(0.3). Fi-
nally, at ¢ = 300, we restore the GLOBAL(0) failure model.
Figure 6 shows the relative errors of the answers provided
by different schemes over time. We use relative error instead
of RMS error because each data point corresponds to just a
single aggregate answer.

As expected (Figure 6(a)), TAG is more accurate when
loss rates are low (¢ € [0,100] or ¢ € [300,400]) whereas SD
is more accurate when loss rates are high (¢ € [100, 300]).
Figure 6(b) and Figure 6(c) compare the relative errors of
TD-Coarse and TD with the smallest of the errors given by
TAG and SD. At a high level, both TD-Coarse and TD, when
converged, have at most the error given by any of the two ex-
isting approaches. However, the graphs reveal a number of
subtle differences between the two Tributary-Delta schemes.
First, because TD can adjust its delta region at a finer gran-
ularity, it can converge to provide a more accurate result.
Second, the coarse granularity of TD-Coarse adversely af-
fects its convergence: the delta region continues to expand
and shrink around the optimal point (e.g., for ¢ € [100, 150]
in Figure 6(b)). The base station can use simple heuristics
to stop the oscillation (e.g., at t = 150), but even then it may
end up using a delta region larger than necessary. Finally,
the benefits of TD come at the cost of a higher convergence
time compared to TD-Coarse. As shown in Figure 6(c), TD
takes around 50 epochs to converge after the network condi-
tion changes. The time can be reduced by carefully choosing
some parameters (e.g., how often the topology is adapted),
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a full exploration of which is beyond the scope of this paper.

7.4 Evaluation With Frequent Items

We begin in Section 7.4.1 by evaluating our tree con-
struction algorithm presented in Section 6.1.3. We then
evaluate our frequent items algorithms using a SYNTHETIC
scenario with the brightness data stream of the LABDATA
dataset evenly partitioned among the sensors. The real-
valued sensor data are discretized with a bucket-size of 5
and frequent items are computed over these discrete val-
ues. For the different versions of our frequent item algo-
rithm, we use error margin ¢ = 0.1% to report all items
with frequency more than the support threshold s = 1% of
the total number of item occurrences, similar to the method-
ology in [13, 12]. Likewise, to compensate for the elimina-
tion of small partial counts at intermediate nodes in our
tree (Step 3 of Algorithm 1) as well as our multi-path algo-
rithm (Step 3 of Algorithm 2) for computing frequent items,
we report all items whose estimated counts are more than
(s — €) fraction of the total count. We present evaluation
of MIN TOTAL-LOAD, our tree algorithm for computing fre-
quent items, in Section 7.4.2. Then, in Section 7.4.3, we
compare our multi-path algorithm against the two existing
algorithms described in Section 6.2. Finally, in Section 7.4.4,
we evaluate TD-Coarse and TD for the frequent items aggre-
gate.

7.4.1 Evaluation of Tree Construction Algorithm

As mentioned in Section 6.1.3, our MIN TOTAL-LOAD al-
gorithm has smaller overhead (by constant factors) if the
aggregation tree is d-dominating for large d values. We note
that, in practice, typical sensor deployments tend to have
this property. For example, Figure 7(a) plots the cumula-
tive number of nodes versus height for the aggregation tree
of the LABDATA dataset. The distribution is lower bounded
by the cumulative number of nodes of a balanced, regular
tree with degree 2.25 (denoted as Regular(2.25)). Hence the
aggregation tree of the LABDATA dataset is 2.25-dominating,
resulting in a low overhead (the constant factor of (1+ ﬁ)

evaluates to 5).

Figure 7(b) and Figure 7(c) show the domination factors
of the aggregation trees in different SYNTHETIC scenarios.
In Figure 7(b), while keeping the deployment area fixed at
20 x 20, we vary the sensor density. In Figure 7(c), we keep
the sensor density fixed (1 sensor per square unit area) and
vary the size of the deployment area by changing its width
(the height remains 20 across all experiments). The graphs
show that our tree construction algorithm (Section 6.1.3)
significantly improves the domination factor d. This is par-
ticularly useful when the domination factor of the tree is low
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Figure 8: Average and maximum load of a sensor in
a tree topology. (Note the log-scale on the y-axis.)

because of low sensor density or narrow deployment area,
since even a slight improvement in the d value greatly re-
duces the constant factor in MIN TOTAL-LOAD (which is
proportional to ﬁ)

7.4.2 Frequent Items over Tree

Figure 8 compares our two frequent items algorithms MIN
TOTAL-LOAD (Section 6.1.2) and HYBRID, the 2-approxima-
tion algorithm presented in Section 6.1.4, against the two
best known existing algorithms: MIN MAX-LOAD [12] and
QUANTILES-BASED® [8]. We report the average and maxi-
mum load (number of integer values transmitted) of a node,
under no message loss, on two sets of data. The first two sets
of bars in the graph represent the results with the LABDATA
dataset. The graph shows that even though the communi-
cation load of our HYBRID algorithm is only guaranteed to
be within a factor of 2 of the best of MIN TOTAL-LOAD and
MIN MAX-LOAD, with our real-world data set it performs
significantly better. Specifically, HYBRID is 4% and 30% bet-
ter than the best of MIN MAX-LOAD and MIN TOTAL-LOAD
for average load and maximum load, respectively. It also
shows that even though our MIN TOTAL-LOAD algorithm
does not aim to reduce maximum load of a node, in practice
it performs very close to MIN MAX-LOAD. The QUANTILES-
BASED algorithm performs significantly worse than the other
algorithms because it is not optimized for the bushy tree we
encounter in LABDATA.

As discussed in Section 6.1, the average load for our MIN
ToTAL-LOAD and HYBRID algorithms is upper bounded by
a constant for any dataset (recall Lemma 3 and Lemma 4
noting that the average load is the total communication di-
vided by the number of nodes), whereas it is logarithmic in
the number of nodes for MIN MAX-LOAD and QUANTILES-

SFrequent items can be computed from quantiles.
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Algorithm False positive | False negative | has only a very small false positive rate. The zero false neg-
UNDERCOUNTING-BASED 2.3% 0 atives and a few false positives arise because (a) we report
COUNTING-BASED 33.3% 30.3% items above s — € fraction, thus sufficiently compensating for
SAMPLING-BASED 15.4% 12.1% the elimination of small partial counts at intermediate nodes

Table 3: Average false positives and false negatives
in the frequent items estimated by different multi-
path algorithms.

BASED. Therefore, we can always construct a stream of items
for which the improvement of MIN TOTAL-LOAD and Hy-
BRID over MIN MAX-LOAD and QUANTILES-BASED is signif-
icant (e.g., zero vs. nonzero). As an example, in the last
two sets of bars in Figure 8, we present results over a syn-
thetic dataset, in which every sensor node receives a stream
of items such that (1) the same item never occurs in multi-
ple streams and (2) within a stream the items are uniformly
distributed. As shown, MIN TOTAL-LOAD incurs only half
the total communication required for the MIN MAX-LOAD
algorithm.

7.4.3 Frequent Items over multi-path

To understand the performance of our multi-path based
frequent items algorithm presented in Section 6.2, which we
denote as UNDERCOUNTING-BASED (Step 3 of Algorithm 2
does the undercounting), we compare it with the two exist-
ing algorithms we summarized in the section. We denote
the first algorithm as COUNTING-BASED and the second al-
gorithm as SAMPLING-BASED.  Since neither COUNTING-
BASED nor SAMPLING-BASED have provable error guarantees,
we likewise relax guarantees for our multi-path algorithm,
in order to keep message overheads low. In particular, in-
stead of using an accuracy preserving duplicate-insensitive
sum operator (Definition 1), which would be necessary for
providing error guarantees, we continue using the low over-
head, best-effort algorithm in [7] for duplicate-insensitivity.
To keep communication costs same, we use a sample size of
1000 for SAMPLING-BASED. Finally, we measure the accu-
racy of the algorithms with their false positive (number of
non-frequent items reported as frequent) and false negative
(number of frequent items not reported) rates.

Table 3 shows the false positive and the false negative
rates in the frequent items estimated by different algorithms.
Each data point represents the average error over 100 exper-
iments (each experiment has a random placement of sensors,
and hence potentially a different topology). As shown, our
UNDERCOUNTING-BASED algorithm has no false negative and

(Step 3 of Algorithm 2), and (b) the estimates from the best-
effort algorithm in [7] for duplicate-insensitivity are usually
higher than the actual value. COUNTING-BASED suffers from
large false positive and false negative rates since the fre-
quent items do not appear significantly more often than
the non-frequent items, making the input a difficult one for
COUNTING-BASED. The false positive and the false negative
rates of SAMPLING-BASED are higher than UNDERCOUNTING-
BASED, suggesting that for this experiment, a sample size of
1000 is not sufficient for SAMPLING-BASED to match the ac-
curacy of our UNDERCOUNTING-BASED approach.

7.4.4 Frequent Items over Tributary-Delta

We now evaluate how well our Tributary-Delta algorithm
finds frequent items. Recall from Section 6.3 that our Tribu-
tary-Delta algorithm for finding frequent items combines a
tree and a multi-path algorithm. For the tree part, we use
our MIN TOTAL-LOAD algorithm, and for the multi-path
part, we use our UNDERCOUNTING-BASED algorithm. Fur-
ther, our Tributary-Delta algorithm requires setting of €4,
the error margin in the tree part, and €,, the error mar-
gin in the multi-path part, so that €, + €, = . We divide
€ = 0.1% in the most natural way— equally between €, and
€v, and leave the task of determining the best division as
future work. As before, we continue reporting items above
s — ¢ fraction, thus sufficiently compensating for the elimi-
nation of small partial counts at intermediate nodes in both
the tree and multi-path part.

Because communication failures mean that the tree part
may not meet its error margin guarantee, we likewise relax
the multi-path part’s error guarantees, in order to reduce
message overheads. In particular, as in the previous section,
we continue using the low overhead, best-effort algorithm
in [7]. As mentioned in the previous section, our multi-path
algorithm for computing frequent items (UNDERCOUNTING-
BASED) has a small (< 3%) false positive rate with no com-
munication failure. Communication failures further reduce
the false positive rate, but introduce false negatives in the
estimated results because some of the items with frequency
above the support threshold s are not reported due to under-
estimation resulting from message loss, mostly in the tree
part.

Figure 9(a) and Figure 9(b) show the false negative rates
of different aggregation schemes under the GLOBAL(p) and



REGIONAL(p, 0.05) failure models, respectively.” As in our
previous results, TD performs as well as (for GLOBAL) or
better than (for REGIONAL) the TAG or SD schemes alone.
In contrast to the Sum or Count aggregate studied in Sec-
tion 7.3, with the Frequent Items aggregate, a multi-path
partial result can consist of more TinyDB messages than a
tree partial result (3 times on average in this experiment).
To make both approaches use comparable energy while keep-
ing the latency, which increases linearly with the number of
retransmissions, acceptable, we let the tree nodes retransmit
their messages twice.® Keeping the latency low is particu-
larly important for many real-time monitoring and control
applications [19]. The results are shown in Figure 9(c). As
expected, retransmission significantly reduces the false neg-
atives of TAG. Still, at loss rates greater than 0.5, the multi-
path algorithm outperforms the tree algorithm and TD can
effectively combine the benefits of both the algorithms.

7.5 Summary of Results

Our results have quantified a number of advantages of our
techniques. First, we have shown that our TD-Coarse and
TD constructions can run tree and multi-path based aggrega-
tion simultaneously in different parts of the network and can
dynamically balance between the tree and multi-path com-
ponents as the operating conditions (e.g., loss rate) change.
Second, Tributary-Delta is able to provide not just the best
of the accuracies provided by tree or multi-path (e.g., by
running either on them in the whole network), but in fact
a significant accuracy improvement over the best, across a
wide range of practical loss rates (0 — 40%)—thus demon-
strating the synergies of using both in tandem. For exam-
ple, in computing Count under typical loss rates (0 — 40%),
Tributary-Delta reduces errors by up to a factor of 3 com-
pared to the best existing approach for that rate. Third, for
complex aggregates (e.g., Frequent Items), Tributary-Delta
may use larger messages than a tree-based algorithm. How-
ever, Tributary-Delta can provide higher accuracy than a
tree that retransmits messages on loss and hence consumes
the same amount of communication energy.” For example,
with our frequent items algorithm and within the loss rates
0 —40%, Tributary-Delta reduces false-negatives by a factor
of 4 compared to the best of TAG and SD. Thus, Tributary-
Delta provides a sweet spot between communication over-
head and approximation error, as shown in Table 1. Finally,
we have shown that our tree-based and multi-path-based
Frequent Items algorithms perform significantly better than
the existing algorithms.

"Note that in the extreme when all nodes run either tree
or multi-path algorithm, our choice of choosing ¢, and €, so
that €, + €, = € holds, and then reporting all items above
frequency greater than (s — €) fraction, reduces the number
of false negatives. However, we obtain similar results, which
we present in the conference version of this paper, even with
the setting €, = ¢, = €.

8Note that, in practice, two retransmissions would incur
more latency than a single transmission of a 3 times longer
message, because each retransmission occurs after waiting
for the intended receiver’s acknowledgment. Other limita-
tions of retransmission include a reduction in channel capac-
ity (by =~ 25%) and the need for bi-directional communica-
tion channels (often not available in practice) [22].

9Note that a tree with retransmission also has a higher re-
sponse time than a Tributary-Delta without retransmission.

8. CONCLUSION

In this paper, we have presented Tributary-Delta, a novel
energy-efficient approach to in-network aggregation in sen-
sor networks. Tributary-Delta combines the advantages of
the existing tree- and multi-path-based approaches by run-
ning them simultaneously in different parts of the network.
We have studied this new approach and presented schemes
for adjusting the balance between tributaries and deltas in
response to changes in network conditions. We have also
shown how a difficult aggregate for this context—finding fre-
quent items—can be efficiently computed in the Tributary-
Delta framework. Our simulation results on real-world and
synthetic data showed that our techniques are greatly supe-
rior to the existing tree- and multi-path-based approaches.
For example, in computing Count under realistic loss rates,
our techniques can reduce errors by up to a factor of 3 com-
pared to any previous technique.
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APPENDIX
A. PROOF OF THEOREM 1

Before stating and proving Theorem 1, we provide bounds
on the accuracy of the synopsis generated at any node (Lem-
ma 5), the accuracy of the synopses resulting from Synopsis
Fusion (Lemma 6, Lemma 7 and Lemma 8), and bounds on
the communication load on a link (Lemma 9, Lemma 10 and
Lemma 11). Recall that all bounds are in terms of the num-
ber of sensors m, the total number of items N, the overall
user-specified error tolerance € and confidence parameter 9,
and the relative error parameter €. of @, where €, §, and
€. are each between 0 and 1, and & is the constant error
duplicate-insensitive sum operator defined in Definition 1.

We start with Lemma 5 which bounds the accuracy of the
synopses generated by the nodes.

LEMMA 5. With probability at least 1 —§, for any synop-
sis S generated at the nodes, and for any item w in S, the
following bounds hold:

e (1—e)Sn<Sn<(l+e)Sn
o (1—€)S.c(u) <S.é(u) < (1+e)S.c(u)

PROOF. At each of the m sensor nodes, after the Syn-
opsis Generation process, at most @ locally frequent
items remain. The union bound suggests that setting the
confidence parameter for the duplicate-insensitive sum algo-

€

rithm as 6. = m is sufficient to have Lemma 5 hold. [J

LEMMA 6. With probability at least 1—§, for any synopsis
S, (1 -€)Sn <8 < (14 e)S.n. Moreover, if the class
of Sisi, (1 —e)2' < S < (1 +€.)24,

Proor. Simple proof using induction. [

LEMMA 7. With probability at least 1 — 6, for any synop-
sis S, the estimated frequency é(u) of any item u satisfies:
S.é(u) < (14 €)c(u).

Proor. By induction on S.7.

Base step (S.7): Such synopsis can only be generated by
Synopsis Generation. If the item is not pruned, Lemma 5
applies. Or else, the lemma trivially holds.

Induction step: Either the synopsis is generated locally,
or the synopsis is a result of invoking Synopsis Fusion. In
case of the former, the base step argument applies. For the
latter, Lemma 7 holds because & is constant error duplicate-
insensitive sum and because of the induction assumption. []

LEMMA 8. With probability 1 — 6§, for any synopsis S of
class i, the estimated frequency é(u) of any item u satisfies:
(1 —ec)(c(u) — ﬁj:—ﬁ) < S.é(u)

ProOOF. By Induction on S.7n.

Base step (S.7 of class 4): If u is pruned, c(u) < f;‘gslf}
and S8.¢(u) = 0. Or else, Lemma 5 can be applied. In either
case, Lemma 8 holds.

Induction step: If the synopsis is generated locally, the
base step argument applies. Otherwise, it is a result of
the synopsis fusion function. Let the two inputs to Syn-
opsis Fusion be synopses S1 and Sz of class k. By induc-
tion assumption, (1 — e.)(Si.c(u) — klif;lfvn) < 81.¢é(u) and
(1 — €)(Sz2.c(u) — ’“12‘;72]\,") < 83.¢(u). Let é(u) denote the
frequency estimate of an item u before the pruning step. It

follows that (1 — ec)(Sy.c(u) — Sob) < é(u). If item u is
not pruned, Sy.¢(u) = é(u) and Lemma 8 holds (irrespec-
tive of whether the class of S increases or not). Or else, the

class of Sy is k+1 and é(u) < %.
e(l—e.)S.n

é(u) < v Hence, Lemma 8 holds. [J

Using Lemma 5,

. . it1 .
LEMMA 9. For a synopsis S of class i, S.n < ffﬁc with

probability at least (1 — 6).
PrOOF. Follows from Step (3) of Algorithm 2. [




LEMMA 10. For any item u belonging to a class i synopsis

S, S.¢(u) > % with probability at least (1 — 9).

PROOF. After synopsis generation, S.&(u) > 126;;\1" In
synopsis fusion, the class of a synopsis increases only in
Step (3) and S.¢(u) > % holds immediately after
that. [

LEMMA 11. The mazimum number of (non-zero) frequency
2(1+ec)2 log N

estimates in any class i synopsis S is Toe)Ze

Proor. Follows from Lemma 9 and Lemma 10. [

Proof of Theorem 1. Lemma 5, Lemma 7 and Lemma 8
provide accuracy bounds on the synopses generated by the
synopsis fusion function. Since & is constant error duplicate-
insensitive sum, the same bounds hold after synopsis evalu-
ation too. The bound on communication load follows from
Lemma 11.





